

Zebrafish Egg Bath Infection Model for Investigating Pathogenesis of Fungal Pathogens

Hsiu-Jung Lo

Taiwan Mycology Reference Center National Health Research Institutes

There Are Good and Bad Fungi

Saccharomyces cerevisiae Beer and Bread

Taiwan CDC :2006Taiwan NosocomialInfection Surveillance(TNIS) inpatients inintensive care unit (ICU)

3

Year

Emerging Threats to Human Health

Fungal Infections:

- 1,000,000,000 skin infections
 100,000,000 Mucosal infections
- 10,000,000 Allergies and SAFS
 (Severe asthma with fungal sensitization)
- > 1,000,000 death
 - = tuberculosis
 - > malaria
 - > breast cancer

To develop new effective antifungal drugs is needed.

Animal Models for Fungal Infections

Rabbit Mouse Fruit Fly Nematodes Wax Moths Zebrafish

Zebrafish Embryo

- Mouse models are predominantly used.
- Several invertebrate models (conserved innate immunity and inexpensive care systems and enable experiments to be performed on a large scale)
- Zebrafish (drug administration, prolific fecundity, optical transparency)

Eye - Fungal Infections of the Cornea

Cambridge Ophthalmological Symposium *Eye* (2003) 17, 852–862. doi:10.1038/sj.eye.6700557 Fungal infections of the cornea Proprietary interests: Nil Presented at the Cambridge Ophthalmological Symposium, 4–6 September 2002

The *cph1 efg1* Mutant Cells Were Capable of Establishing Restricted Zone of Infection

Wild-type

Mutant

A Fruit Fly Infected with Beauveria bassiana

Fruit flies that developed in space showed weakened immunity to fungal infections postspaceflight. Jmage Credit: Deborah Kimbrell (PLoS One 2014)

Brunke et al., Of mice, flies – and men? Comparing fungal infection models for large-scale screening efforts, Disease Models and Mechanisms 2015 8: 473-486 Glittenberg et al., Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans Disease Models and Mechanisms 2011 4: 504-514

A Warm Infected with Beauveria bassiana

Caenorhabditis elegans

Image courtesy of Remedica Journals http://www.remedicajournals.com/The-Journal-of-Invasive-Fungal-Infections/Browsels sues/Volume-5-Issue-4/Article-Caenorhabditis-elegans-Antifungal-Defense-Mechanisms

A Warm Infected with Candida albicans

Galleria mellonella

Cowen et al., Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease" PNAS, February 24, 2009

Candida albicans in Zebrafish 清大 藍忠昱及莊永仁

Danio rerio

Chao et al., Zebrafish as a Model Host for *Candida albicans* Infection Infect Immun. 2010 Jun; 78(6): 2512–2521.

Progression of C. albicans Hyphal Formation in Zebrafish 清大 藍忠昱及莊永仁

Danio rerio

Arrows indicate C. albicans cells. L, liver; S, swim bladder; I, intestine

Chao et al., Zebrafish as a Model Host for *Candida albicans* Infection Infect Immun. 2010 Jun; 78(6): 2512–2521.

http://www.jove.com/video/52182/mo deling-mucosal-candidiasis-larvalzebrafish-swimbladder

Candida albicans Infects the Swimbladder of Juvenile Zebrafish

inflated

> 20 C. albicans cells

non-inflated

Gratacap et al., Mucosal candidiasis elicits NF-κB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Disease Models and Mechanisms 2013 6: 1260-1270.

Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives. Božinović et al., Chem Biol Drug Des. 2016 Jun 18. [Epub ahead of print]

Phenotypic Plasticity Regulates *Candida albicans* Interactions and Virulence in the Vertebrate Host. Mallick et al., Front Microbiol. 2016 26;7:780.

A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks. Wu & Chen, PLoS One. 2016, 16;11(2):e0149303.

Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates. Ajdačić et al., Bioorg Med Chem. 2016, 15;24(6):1277-91.

Mechanism-specific and whole-organism ecotoxicity of monorhamnolipids. Johann et al., Sci Total Environ. 2016, 548-549:155-63.

Zebrafish: an animal model for research in veterinary medicine. Nowik et al., Pol J Vet Sci. 2015;18(3):663-74. Zebrafish Egg Infection Model for Studying *Candida albicans* Adhesion Factors. Chen et al., PLoS One. 2015, 10(11):e0143048.

Myeloperoxidase-deficient zebrafish show an augmented inflammatory response to challenge with *Candida albicans*. Wang et al., Fish Shellfish Immunol. 2015, 44(1):109-16

Robustness analysis on interspecies interaction network for iron and glucose competition between *Candida albicans* and zebrafish during infection. Lin et al., BMC Syst Biol. 2014, 8 Suppl 5:S6.

Modeling mucosal candidiasis in larval zebrafish by swimbladder injection. Gratacap et al., J Vis Exp. 2014, (93):e52182.

The role of TGF-β signaling and apoptosis in innate and adaptive immunity in zebrafish: a systems biology approach. Lin et al., BMC Syst Biol. 2014, 8:116.

A systems biology approach to study systemic inflammation. Chen & Wu, Methods Mol Biol. 2014, 1184:403-16.

Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Torraca et al., Dis Model Mech. 2014, 7(7):785-97.

Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish. Teng et al., Dev Comp Immunol. 2014, 46(2):489-98.

Essential functional modules for pathogenic and defensive mechanisms in *Candida albicans* infections. Wang et al., Biomed Res Int. 2014, 2014:136130

Generating a battery of monoclonal antibodies against native green fluorescent protein for immunostaining, FACS, IP, and ChIP using a unique adjuvant. Sanchez et al., Monoclon Antib Immunodiagn Immunother. 2014, 33(2):80-8.

Utilization of zebrafish for intravital study of eukaryotic pathogen-host interactions. Gratacap & Wheeler, Dev Comp Immunol. 2014, 46(1):108-15.

NADPH oxidase-driven phagocyte recruitment controls Candida *albicans* filamentous growth and prevents mortality. Brothers et al., PLoS Pathog. 2013, 9(10):e1003634.

Dynamic transcript profiling of *Candida albicans* infection in zebrafish: a pathogen-host interaction study. Chen et al., PLoS One. 2013, 8(9):e72483.

Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a *Candida albicans-zebrafish* interaction study. Wang et al., BMC Syst Biol. 2013, 7:79.

Mucosal candidiasis elicits NF-κB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Gratacap et al., Dis Model Mech. 2013, 6(5):1260-70.

Diverse Hap43-independent functions of the *Candida albicans* CCAATbinding complex. Hsu et al., Eukaryot Cell. 2013, (6):804-15.

Identification of infection- and defense-related genes via a dynamic hostpathogen interaction network using a Candida albicans-zebrafish infection model. Kuo et al., J Innate Immun. 2013, 5(2):137-52.

Non-invasive imaging of disseminated candidiasis in zebrafish larvae. Brothers & Wheeler, J Vis Exp. 2012 , 65.

Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Brothers et al., Eukaryot Cell. 2011, 10(7):932-44.

Zebrafish as a model host for Candida albicans infection. Chao et al., Infect Immun. 2010, 78(6):2512-21.

Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase. Deng et al., J Bacteriol. 2009, 191(23):7270-8.

Zebrafish Egg Bath Infection Model

Rabbit Mouse Fruit Fly Nematodes Wax Moths Zebrafish

Zebrafish Embryo

- Mouse models are predominantly used.
- Several invertebrate models (conserved innate immunity and inexpensive care systems and enable experiments to be performed on a large scale)
- Zebrafish (drug administration, prolific fecundity, optical transparency)

Candida albicans Switch between Yeast Form and Hyphal Form

Yeast form

Germ tube

The ability to switch is important for its virulence.

Hyphal form

Wild-typecph1/cph1 efg1/efg1

SC5314 cells formed hyphae & killed embryos. *cph1/cph1 efg1/efg1* cells is not lethal to embryos. Optimal conditions?

To define the optimal conditions for zebrafish embryo bath infection, we co-incubated wild-type *C. albicans* cells, SC5314, with 1-day post-fertilization embryos

for various periods of time (1 or 4 hours), at various shaking speeds (0, 80, 180 rpm), and in various media [egg water (0.03% sea salt), egg water/10% serum, RPMI, RPMI/10%serum]

Sterilize 1-day postfertilization embryos with 0.028% bleach

Co-incubate embryos with *C. albicans* cells in 6-well plate containing 4 ml of different medium at 0, 80, or 180 rpm and 30 °C for 1 or 4 hours

1. Removed unadhered *C. albicans* cells
2. Incubate embryos in 24-well plate in 1 ml of egg water at 30 °C for 2 days

The Conditions for the

Zebrafish Egg Bath Infection Model

Medium/	4-1	h co-incubati	ion	
	Sha	aking speed (rj	om)	
inoculum	0	80	180	
	2-day additional incubation			
EW/10⁷	100	100	100	
EW+S/10 ⁷	62 ± 8.7	0	45 ± 50.7	
R/10⁷	0	0	0	
R+S/10 ⁷	3 ± 5.8	0	29 ± 41.9	
R/10⁶	0	0	37 ± 50.1	
R+S/10 ⁶	15 ± 13.8	0	91 ± 16.2	

EW: egg water; R: RPMI; S: 10% serum; 10⁶:1 X 10⁶ ells/ml; 10⁷:1 X 10⁷ cells/ml; *Survival rate ± standard deviation

4 h co-incubation, 80 rpm

Medium/	4-]	h co-incubati	ion		
inoculum	Shaking speed (rpm)				
	0	80	180		
	2 day additional incubation				
EW/10⁷	100	100	100		
EW+S/10 ⁷	62 ± 8.7	0	45 ± 50.7		
R/10⁷	0	0	0		
R+S/10 ⁷	3 ± 5.8	0	29 ± 41.9		
R/10⁶	0	0	37 ± 50.1		
R+S/10 ⁶	15 ± 13.8	0	91 ± 16.2		
	D. DDMI. C. 100/	106.1 3	7 1 0 6 11 / 1		

EW: egg water; R: RPMI; S: 10% serum; 10⁶:1 X 10⁶ ells/ml; 10⁷:1 X 10⁷ cells/ml; *Survival rate ± standard deviation

Lowest Inoculum

Lowest Inoculum: 5 x 10⁵ cells/ml

CAF2-dTomato: Brothers et al. (2013) PLoS Pathog 9: e1003634.

Inoculum: > 5 x 10⁵ cells/ml Co-incubation period: 4 hours Medium: RPMI or RPMI/serum Sharking: 80 rpm Temperature: 30 °C

Can this model be applied to study other mutant strains known to be involved in virulence?

- *bcr1*: decreased adhesion, decreased biofilm formation, normal hyphal growth
- cph1: normal germ tube formation and hyphal growth
- *efg1*: decreased adhesion, decreased biofilm formation, no hyphal growth
- *sap6*: Secreted aspartyl protease; normal hyphal growth and virulence
- *tec1*: decreased adhesion, decreased biofilm formation, normal hyphal growth

Germ Tube Formation of other Mutant Strains?

Hyphal Formation of other Mutant Strains?

The Results of the Embryo Model Are Consistent with Those in Mouse one

Deletions of *CPH1* **or** *SAP6* **Did Not** Have Effect on Adhesion or Hyphal Formation

33

sap6

Did Candida cells direct penetrate into larvae?

Confocal Imaging: Green Candida cells

On the chorion

Penetrate chorion

OG1 cells: Chao et al (2010). Infection and Immunity 78: 2512.

Majority of C. albicans cells stay on the chorion.

Potential Cause(s) for the Death of Embryos

failure of transporting toxicities, either secreted by *C. albicans* or generated by embryos,

and/or lack of oxygen

Any comments/suggestions are highly appreciated.

We have established a protocol in 24-well plate.

Can this model study pathogenesis of other species?

Candida parapsilosis Caused Death of Embryos

10282015	RPMI 1x10 ⁷ cells/ml		
Co-incubated in RPMI in 24-well for 6 h , washed, FW with 0.5% VPD survival rate determination			
	24 h	48 h	
Control	100	100	
C. albicans SC5314	0	0	
C. albicans cph1 efg1	100	100	
C. krusei	100	100	
C. parapsilosis	50	0	
C. glabrata	100	90	
C. tropicalis	78	78	

Survival Rates after 24 h/48 h Additional Incubation

Control (100) HLC54 (100) SC5314 (0)

C. glabrata(100)

C. krusei (100)

C. parapsilosis (50/0)

C. tropicalis (78/78)

Under the conditions tested,

1. All tested *C. krusei*, *C. glabrata*, *and Cryptococcus neoformans* did not cause death of embryos.

2. Some *C. parapsilosis* and *C. tropicalis* strains can cause death of embryos

- * Dr. C. H. Lin for kindly providing us with bcr1/bcr1 and tec1/tec1 strains, Dr. Y. C. Chen for the sap6/sap6 strain, Dr. C. Y. Lan for the OG1 strain, and Dr. R. Wheeler for the CAF2-dTomato strain.
- * NHRI zebrafish core facility for its help in establishing the bath infection model.
- * Hard worker: Ms. Yin-Zhi Chen
- ***** Collaborators: Drs. M. S. You and Y. L. Yang
- ***** Supported by NHRI and MOST in Taiwan

Thank You for Your Attention